Sains Malaysiana 53(9)(2024):
3159-3171
http://doi.org/10.17576/jsm-2024-5309-20
Mechanism of Damnacanthal Induced Apoptosis in CEM-SS Cell Line
(Mekanisme Apoptosis Teraruh Damnacanthal dalam Titisan Sel CEM-SS)
BANULATA
GOPALSAMY, SAIFUL YAZAN LATIFAH* & HISYAM ABDUL HAMID
Department
of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
Diserahkan: 9 Januari 2024/Diterima: 5 Ogos 2024
Abstract
Leukaemia,
is cancer of organs that is responsible to produce blood specifically the
lymphatic system and bone marrow. Due to the harsh effects of currently used
cancer drugs, damnacanthal, an anthraquinone obtained from the roots of Morinda elliptica is tested as a potential anticancer agent.
This study reports on the participation of the p53, Bcl-2 and Bax in the apoptosis induced by of damnacanthal,
on T-lymphoblastic leukaemia (CEM-SS) cell. Cell viability and morphology was
tested with trypan blue assay, flow cytometry analysis detected the apoptotic
activity of damnacanthal, caspase colorimetric
protease assay tested the Caspase 2, 3, 6, 8, and 9’s involvement and
Enzyme-linked Immunosorbent Assay (ELISA) was carried out to quantify the Human
p53, Bcl-2, and Bax expression levels. Damnacanthal exhibited cytotoxicity at doses 10 and 30
µg/mL after 72 h of incubation. This study reports that damnacanthal arrested the cell at G2/M phase and initiates the apoptotic activity in the
cells treated with 30 µg/mL of damnacanthal for 72 h
through caspase 2 and 6 activation and not caspases 3, 8, and 9. Furthermore,
this anthraquinone induces apoptosis via p53-independent pathway. Damnacanthal also lowered Bcl-2 and increased Bax activity in CEM-SS cell lines. These anticancer
properties of damnacanthal makes it a potential agent
to treat T-lymphoblastic leukaemia.
Keywords: Anticancer;
apoptosis; CEM-SS; damnacanthal
Abstrak
Leukemia adalah kanser bagi organ yang bertanggung jawab
menghasilkan darah, terutamanya sistem limfa dan sum sum tulang. Disebabkan
kesan yang buruk oleh ubat kanser yang sedia ada, damnacanthal, salah satu
antrakuinon yang diperoleh daripada akar Morinda elliptica telah diuji
sebagai agen anti kanser yang berpotensi. Penyelidikan ini melaporkan
penglibatan p53, Bcl-2 dan Bax dalam apoptosis aruhan
damnacanthal, ke atas sel T-limfoblastik leukemia (CEM-SS). Kemandirian sel dan
morfologi telah diuji dengan ujian tripan biru, analisis sitometri aliran
mengesan aktiviti apoptosis damnacanthal, ujian protease kolorimetrik caspase
menguji penglibatan Caspase 2, 3, 6, 8 dan 9 dan Ujian Imunosorben Berkaitan
Enzim (ELISA) telah dijalankan untuk mengukur tahap pengekspresan p53, Bcl-2
dan Bax manusia. Damnacanthal menunjukkan sitotoksisiti pada dos 10 dan 30
µg/mL selepas 72 jam pengeraman. Kajian ini melaporkan bahawa damnacanthal
menahan sel pada fasa G2/M dan memulakan aktiviti apoptosis dalam sel yang
dirawat dengan 30 µg/mL damnacanthal selama 72 jam melalui pengaktifan caspase
2 dan 6 dan bukan caspases 3, 8 dan 9. Tambahan pula, antrakuinon ini mendorong
apoptosis melalui laluan bebas p53. Damnacanthal juga menurunkan Bcl-2 dan
meningkatkan aktiviti Bax dalam sel CEM-SS. Sifat antikanser damnacanthal ini
menjadikannya agen berpotensi untuk merawat leukemia T-limfoblastik.
Kata kunci: Antikanser;
apoptosis; CEM-SS; damnacanthal
RUJUKAN
Abu,
N., Ali, N.M., Ho, W.Y., Yeap, S.K., Aziz, M.Y. & Alitheen,
N.B. 2014. Damnacanthal: A promising compound as a
medicinal anthraquinone. Anti-Cancer Agents in Medicinal Chemistry 14(5): 750-755. doi: 10.2174/18715206113136660366
Al
Bitar, S. & Gali-Muhtasib, H. 2019. The role of
the cyclin dependent kinase inhibitor p21cip1/waf1 in targeting
cancer: Molecular mechanisms and novel therapeutics. Cancers (Basel) 11(10):
1475. doi: 10.3390/cancers11101475
Ali,
A., Ismail, N., Mackeen, M., Yazan, L., Mohamed, S., Ho, A. & Lajis, N. 2000. Antiviral, cytotoxic and antimicrobial
activities of anthraquinones isolated from the roots of Morinda elliptica. Pharmaceutical Biology 38:
298-301. doi: 10.1076/1388-0209(200009)3841-AFT298
Allen,
R.T., Hunter III, W.J. & Agrawal, D.K. 1997. Morphological and biochemical
characterization and analysis of apoptosis. Journal of Pharmacological and
Toxicological Methods 37(4): 215-228. doi:
10.1016/s1056-8719(97)00033-6
Anand,
U., Dey, A., Chandel, A.K.S., Sanyal, R., Mishra, A., Pandey, D.K., De Falco,
V., Upadhyay, A., Kandimalla, R., Chaudhary, A., Dhanjal,
J.K., Dewanjee, S., Vallamkondu,
J. & Pérez de la Lastra, J.M. 2022. Cancer chemotherapy and beyond: Current
status, drug candidates, associated risks and progress in targeted
therapeutics. Genes & Diseases 10(4): 1367-1401. doi:
10.1016/j.gendis.2022.02.007
Aziz,
M.Y., Omar, A.R., Subramani, T., Yeap, S.K., Ho, W.Y., Ismail, N.H., Ahmad, S.
& Alitheen, N.B. 2014. Damnacanthal is a potent inducer of apoptosis with anticancer activity by stimulating p53
and p21 genes in MCF-7 breast cancer cells. Oncology Letters 7(5):
1479-1484. doi: 10.3892/ol.2014.1898
Basnakian,
A.G. & Moore, C.L. 2021. Apoptotic DNase network: Mutual induction and
cooperation among apoptotic endonucleases. Journal of Cellular and Molecular
Medicine 25(14): 6496-6499. doi:
10.1111/jcmm.16665
Boatright,
K.M. & Salvesen, G.S. 2003. Mechanisms of caspase activation. Current
Opinion in Cell Biology 15: 725-731. doi:
10.1016/j.ceb.2003.10.009
Brown,
G.C. & Borutaite, V. 2008. Regulation of
apoptosis by the redox state of cytochrome c. Biochimica et Biophysica Acta 1777: 877-881. doi: 10.1016/j.bbabio.2008.03.024
Buytaert,
E., Dewaele, M. & Agostinis, P. 2007. Molecular
effectors of multiple cell death pathways initiated by photodynamic therapy. Biochimica et Biophysica Acta 1776: 86-107. doi:
10.1016/j.bbcan.2007.07.001
Chen,
H.C., Hsieh, W.T., Chang, W.C. & Chung, J.G. 2004. Aloe-emodin induced in
vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells. Food and Chemical Toxicology 42: 1251-1257. doi: 10.1016/j.fct.2004.03.002
Cheng,
A.C., Jian, C.B., Huang, Y.T., Lai, C.S., Hsu, P.C. & Pan, M.H. 2007.
Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production,
cytochrome c release, and caspases activation in human leukemia cells. Food and Chemical Toxicology 45: 2206-2218. doi:
10.1016/j.fct.2007.05.016
Chipuk,
J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D.,
Schuler, M. & Green, D.R. 2004. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660): 1010-1014. doi: 10.1126/science.1092734
Chong,
T.M., Abdullah, M.A., Fadzillah, N.M., Lai, O.M.
& Lajis, N.H. 2005. Jasmonic acid elicitation of anthraquinones with some associated enzymic and non-enzymic
antioxidant responses in Morinda elliptica. Enzyme and Microbial Technology 36:
469-477. https://doi.org/10.1016/j.enzmictec.2004.11.002
Dvory-Sobol,
H., Cohen-Noyman, E., Kazanov, D., Figer, A.,
Birkenfeld, S., Madar-Shapiro, L., Benamouzig, R.
& Arber, N. 2006. Celecoxib leads to G2/M arrest by induction of p21 and
down-regulation of cyclin B1 expression in a p53-independent manner. European
Journal of Cancer 42: 422-426. doi:
10.1016/j.ejca.2005.11.009
Foster,
I. 2008. Cancer: A cell cycle defect. Radiography 14: 144-149.
https://doi.org/10.1016/j.radi.2006.12.001
Fukuhara,
K., Oikawa, S., Hakoda, N., Sakai, Y., Hiraku, Y.,
Shoda, T., Saito, S., Miyata, N., Kawanishi, S. & Okuda, H. 2007.
9-Nitroanthracene derivative as a precursor of anthraquinone for photodynamic
therapy. Bioorganic and Medicinal Chemistry 15: 3869-3873. doi: 10.1016/j.bmc.2007.03.029
García-Vilas,
J.A., Quesadal, A.R. & Medina, M.A. 2015. Damnacanthal, a noni anthraquinone,
inhibits c-Met and is a potent antitumor compound against Hep G2 human
hepatocellular carcinoma cells. Scientific Reports 5: 8021. doi: 10.1038/srep08021
GLOBOCAN.
2020.
https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf
(Accessed 3 May 2023).
Green,
D.R. 2022. Caspases and their substrates. Cold Spring Harbor Perspectives in
Biology 14: a041012. doi: 10.1101/cshperspect.a041012
Heiser,
D., Labi, V., Erlacher, M. & Villunger, A. 2004.
The Bcl-2 protein family and its role in the development of neoplastic disease. Experimental Gerontology 39: 1125-1135. doi:
10.1016/j.exger.2004.04.011
Hirazumi,
A., Furusawa, E., Chou, S.C. & Hokama, Y. 1996. Immunomodulation
contributes to the anticancer activity of Morinda citrifolia (Noni) fruit juice. Proceedings of
the Western Pharmacology Society 39: 7-9.
Hounsell,
C. & Fan, Y. 2021. The duality of caspases in cancer, as told through the
fly. International Journal of Molecular Sciences 22(16): 8927. doi: 10.3390/ijms22168927
Huang,
P., Akagawa, K., Yokoyama, Y., Nohara, K., Kano, K. & Morimoto, K. 2007.
T-2 toxin initially activates caspase-2 and induces apoptosis in U937 cells. Toxicology
Letters 170(1): 1-10. doi:
10.1016/j.toxlet.2006.05.017
Hubner,
S., Eam, J.E., Hubner, A. & Jans, D.A. 2006. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates. Experimental
Cell Research 312: 171-183. doi:
10.1016/j.yexcr.2005.10.011
Hussar,
P. 2022. Apoptosis regulators Bcl-2 and caspase-3. Encyclopedia 2(4): 1624-1636. https://doi.org/10.3390/encyclopedia2040111
Ismail,
N., Mohamad, H., Mohidin, A. & Lajis, N.H. 2002. Antioxidant activity of anthraquinones from Morinda elliptica. Natural Product Sciences 8:
48-51. https://www.researchgate.net/publication/289830185_Antioxidant_activity_of_anthraquinones_from_Morinda_elliptica
Johnson,
L.R. 2006. Apoptosis in the Gastrointestinal Tract. In Physiology of the
Gastrointestinal Tract. 4th ed., edited by Johnson, L.R., Barret, E.K., Ghishan, F.K., Merchant, J.L., Said, H.M. & Wood, J.D.
Massachusetts: Academic Press. pp. 345-373.
Katta,
B., Vijayakumar, C., Dutta, S., Dubashi, B. & Nelamangala Ramakrishnaiah, V.P. 2023. The incidence and severity
of patient-reported side effects of chemotherapy in routine clinical care: A
prospective observational study. Cureus 15(4):
e38301. doi: 10.7759/cureus.38301
Klaiman,
G., Champagne, N. & LeBlanc, A.C. 2009. Self-activation of caspase-6 in
vitro and in vivo: Caspase-6 activation does not induce cell death
in HEK293T cells. Biochimica et Biophysica Acta 1793:
592-601. doi: 10.1016/j.bbamcr.2008.12.004
Klucar, J.
& al-Rubeai, M. 1997. G2 cell cycle and apoptosis
are induced in Burkitt’s lymphoma cells by anticancer agent oracin. FEBS Letters 400(1): 127-130. doi:
10.1016/s0014-5793(96)01307-5
Latifah,
S.Y., Gopalsamy, B., Abdul Rahim, R., Manaf Ali, A.
& Haji Lajis, N. 2022. Ultrastructural and
morphological effects in T-lymphoblastic leukemia CEM-SS cells following treatment with nordamnacanthal and damnacanthal from roots of Morinda elliptica. Molecules 27(13): 4136. doi: 10.3390/molecules27134136
Latifah,
S.Y., Gopalsamy, B., Abdul Rahim, R., Manaf Ali, A.
& Haji Lajis, N. 2021. Anticancer potential of damnacanthal and nordamnacanthal from Morinda elliptica roots on T-lymphoblastic leukemia cells. Molecules 26(6): 1554. doi: 10.3390/molecules26061554
Lee,
H.Z., Hsu, S.L., Liu, M.C. & Wu, C.H. 2001. Effects and mechanisms of
aloe-emodin on cell death in human lung squamous cell carcinoma. European Journal
of Pharmacology 431: 287-295. doi:
10.1016/s0014-2999(01)01467-4
Li,
R., Li, H., Lan, J., Yang, D., Lin, X., Xu, H., Han, B., Yang, M., Su, B., Liu,
F. & Jiang, W. 2022. Damnacanthal isolated from Morinda species inhibited ovarian cancer cell proliferation
and migration through activating autophagy. Phytomedicine 100(2022):
154084. doi: 10.1016/j.phymed.2022.154084
Nor Hadiani, I., Ali, A.M., Aimi, N., Kitajima, M., Takayama,
H. & Nordin, H.L. 1997. Anthraquinones from Morinda elliptica. Phytochemistry 45: 1723-1725. https://doi.org/10.1016/S0031-9422(97)00252-5
Nualsanit,
T., Rojanapanthu, P., Gritsanapan,
W., Lee, S.H., Lawson, D. & Baek, S.J. 2012. Damnacanthal,
a noni component, exhibits antitumorigenic activity in human colorectal cancer
cells. Journal of Nutritional Biochemistry 23: 915-923. doi: 10.1016/j.jnutbio.2011.04.017
Park,
C., Shin, H.J., Kim, G.Y., Kwon, T.K., Name, T.J., Kim, S.K., Cheong, J., Choi,
I.W. & Choi, Y.H. 2008. Induction of apoptosis by streptochlorin isolated from Streptomyces sp. in human leukaemic U937 cells. Toxicology in Vitro 22: 1573-1581. doi:
10.1016/j.tiv.2008.06.010
Parrish,
A.B., Freel, C.D. & Kornbluth, S. 2013. Cellular mechanisms controlling
caspase activation and function. Cold Spring Harbor Perspectives in Biology 5(6): 008672. doi: 10.1101/cshperspect.a008672
Povea-Cabello,
S., Oropesa-Ávila, M., de la Cruz-Ojeda, P., Villanueva-Paz, M., de la Mata,
M., Suárez-Rivero, J.M., Álvarez-Córdoba, M., Villalón-García,
I., Cotán, D., Ybot-González,
P. & Sánchez-Alcázar, J.A. 2017. Dynamic
reorganization of the cytoskeleton during apoptosis: The two coffins
hypothesis. International Journal of Molecular Sciences 18(11): 2393.
https://doi.org/10.3390/ijms18112393
Prasad,
V., Chandele, A., Jagtap, J.C., Kumar, S. & Shastry,
P. 2006. ROS-triggered caspase 2 activation and feedback amplification loop in
β-carotene-induced apoptosis. Free Radical Biology & Medicine 41: 431-442. doi: 10.1016/j.freeradbiomed.2006.03.009
Rajendran,
M., Inbaraj, J.J., Gandhidasan,
R. & Murugesan, R. 2004. Photodynamic action of damnacanthal and nordamnacanthal. Journal of Photochemistry and
Photobiology A: Chemistry 162: 615-623.
https://doi.org/10.1016/S1010-6030(03)00415-5
Schonthal,
A.H., Mueller, S. & Cadenas, E. 2000. Redox regulation of p21, role of
reactive oxygen and nitrogen species in cell cycle progression. In Antioxidant
and Redox Regulation, edited by Sen, C.K., Sies, H. & Baeuerle, P.A. Massachusetts: Academic Press. pp. 311-336.
Schutte,
B., Henfling, M., Kolgen, W., Bouman, M., Meex, S., Leers, M.P.G., Nap, M., Bjorklund, V., Bjorklund,
P., Bjorklund, B., Lane, E.B., Omary, M.B., Jornvall, H. & Ramaekers, F.C.S. 2004. Keratin 8/18
breakdown and reorganization during apoptosis. Experimental Cell Research 297: 11-26. doi: 10.1016/j.yexcr.2004.02.019
Shaghayegh, G., Alabsi,
A.M., Ali-Saeed, R., Ali, A.M., Vincent-Chong, V.K., Ismail, N.H., Choon, Y.F.
& Zain, R.B. 2017. Effects of damnacanthal and nordamnacanthal on proliferation, apoptosis, and migration
of oral squamous cell carcinoma cells. Asian Pacific Journal of Cancer
Prevention 18: 3333-3341. doi:
10.22034/APJCP.2017.18.12.3333
Shami,
A.M.M. 2018. Antibacterial and antioxidant properties of anthraquinones fractions from Morinda citrifolia fruit. Journal of Reports in Pharmaceutical Sciences 7: 379-388.
https://www.researchgate.net/publication/329487739_Antibacterial_and_Antioxidant_Properties_of_Anthraquinones_Fractions _from_Morinda_Citrifolia_Fruit
(Accessed on 6 June 2023).
Shieh,
D.E., Chen, Y.Y., Yen, M.H., Chiang, L.C. & Lin, C.C. 2004. Emodin-induced
apoptosis through p53-dependent pathway in human hepatoma cells. Life
Sciences 74: 2279-2290. doi:
10.1016/j.lfs.2003.09.060
Siegel,
R.L., Miller, K.D., Wagle, N.S. & Jemal, A. 2023. Cancer statistics. A
Cancer Journal for Clinicians 73(1): 17-48. doi:10.3322/caac.21763
Silva,
G.M., Saavedra, V., Ianez, R.C.F., Sousa, E.A.,
Gomes, N., Kelner, N., Nagai, M.A., Kowalski, L.P., Soares, F.A., Lourenço,
S.V. & Coutinho-Camillo, C.M. 2019. Apoptotic signaling in salivary mucoepidermoid carcinoma. Head and
Neck 41: 2904-2913. doi: 10.1002/hed.25763
Stennicke,
H.R. & Salvesen, G.S. 1998. Properties of the caspases. Biochimica et Biophysica Acta 1387: 17-31.
Su,
Y.T., Chang, H.L., Shyue, S.K. & Hsu, S.L. 2005.
Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive
oxygen species-dependent mitochondrial signaling pathway. Biochemical Pharmacology 70: 229-241. doi:
10.1016/j.bcp.2005.04.026
Tamura,
Y., Simizu, S. & Osada, H. 2004. The
phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by
ERK and protein phosphatase 2A on the mitochondria. FEBS Letters 569:
249-255. doi: 10.1016/j.febslet.2004.06.003
Tseng,
C.J., Wang, Y.J., Liang, Y.C., Jeng, J.H., Lee, W.S., Lin, J.K., Chen, C.H.,
Liu, I.C. & Ho, Y.S. 2002. Microtubule damaging agents induce apoptosis in
HL 60 cells and G2/M cell cycle arrest in HT29 cells. Toxicology 175:
123-142. doi: 10.1016/s0300-483x(02)00073-2
Van Opdenbosch, N. & Lamkanfi, M.
2019. Caspases in cell death, inflammation, and disease. Immunity 50(6):
1352-1364. doi: 10.1016/j.immuni.2019.05.020
Wang,
H., Guo, M., Wei, H. & Chen, Y. 2023. Targeting p53 pathways: Mechanisms,
structures, and advances in therapy. Signal Transduction and Targeted
Therapy 8(1): 92. https://doi.org/10.1038/s41392-023-01347-1
Wei,
H., Qu, L., Dai, S., Li, Y., Wang, H., Feng, Y., Chen, X., Jiang, L., Guo, M.,
Li, J., Chen, Z., Chen, L, Zhang, Y. & Chen, Y. 2021. Structural insight
into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nature
Communications 12: 2280. https://doi.org/10.1038/s41467-021-22655-6
World
Health Organization (WHO). 2021. Assessing national capacity for the prevention
and control of noncommunicable diseases: Report of the 2019 global survey.
World Health Organization. https://apps.who.int/iris/handle/10665/331452
Woradulayapinij,
W., Pothiluk, A., Nualsanit,
T., Yimsoo, T., Yingmema,
W., Rojanapanthu, P., Hong, Y., Baek, S.J. & Treesuppharat, W. 2022. Acute oral toxicity of damnacanthal and its anticancer activity against colorectal
tumorigenesis. Toxicology Reports 9: 1968-1976. doi:
10.1016/j.toxrep.2022.10.015
Zhivotovsky, B.
& Orenius, R. 2005. Caspase-2 function in
response to DNA damage. Biochemical and Biophysical Research Communications 331: 859-867. doi: 10.1016/j.bbrc.2005.03.191
*Pengarang untuk surat-menyurat; email: latifahsy@upm.edu.my
|